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Abstract

Backdoor attack, which is inserting attack trig-
gers to data during the training period to poi-
son certain models, is gaining increasing pop-
ularity in the community. However, no pre-
vious work has covered the attack on Com-
monSense Knowledge Graphs (CSKG). In this
project, we investigate the role of inductive
graph reasoning on improving the resilience
against backdoor attacks to CSKG by perturb-
ing the training process of KG-BERT and KG-
BERTSAGE, two representative commonsense
knowledge graph learning models, using back-
door attack techniques, and comparing their
performance and attack success rate on a down-
stream link prediction task. Through exten-
sive experiments using different datasets, dif-
ferent language model backbones, and differ-
ent poison rates, we discovered that the current
way of conducting inductive graph reasoning
and leveraging neighboring aggregation in KG-
BERTSAGE cannot help the model become
resilient to backdoor attacks. We will intersect
our future work with more challenging tasks
such as commonsense knowledge graph popu-
lation with newly annotated evaluation set.

1 Introduction

Commonsense knowledge, which is facts about the
everyday world, such as “Lemons are sour,” that all
humans are expected to know, is claimed to be an
indispensable part of artificial intelligence (Davis
and Marcus, 2015). As Commonsense Knowledge
is crucial for many natural language processing
systems to conduct commonsense reasoning at a
human level, multiple commonsense knowledge
bases (CSKB) (Speer et al., 2017; Sap et al., 2019;
Hwang et al., 2021) have been collected systemati-
cally to acquire commonsense data. The informa-
tion in large-scale CSKBs is often integrated into
graph structures to effectively leverage the embed-
ded commonsense knowledge, forming common-
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sense knowledge graphs (CSKG) (Ilievski et al.,
2021).

With the unprecedented success achieved by
large Pre-Trained Language Models (PTLM) (De-
vlin et al., 2018; Liu et al., 2019; Radford et al.,
2018; He et al., 2020) on handling natural human
languages describing eventualities, and Graph Neu-
ral Networks (GNN) on processing ordinary graph-
structured data, multiple commonsense knowledge
graph learning models, of which KG-BERT (Yao
et al., 2019) and KG-BERTSAGE (Fang et al.,
2021a) are two representatives, have been proposed
to effectively learn knowledge from various com-
monsense knowledge graphs and apply them to
downstream tasks. KG-BERTSAGE, which con-
ducts inductive graph reasoning by aggregating
and leveraging the neighboring information in the
CSKG, was shown to be capable of achieving
stronger performance in the CSKG population task
compared to KG-BERT (Fang et al., 2021a). How-
ever, performance is no longer the only criterion
for evaluating contemporary deep learning mod-
els. With the reveal of the vulnerability of deep
learning models to multiple kinds of attacks, such
as backdoor attacks (Gu et al., 2019; Dai et al.,
2019; Zhang et al., 2021), the resilience and robust-
ness against such attacks has become a significant
concern.

In this project, we investigate the role of in-
ductive graph reasoning on improving the re-
silience against backdoor attacks to common-sense
knowledge graphs. We compare the performance
and attack success rate of KG-BERT and KG-
BERTSAGE on a link prediction task in CSKG.
Experiment results show that the current neigh-
borhood aggregation in KG-BERTSAGE is insuffi-
cient in terms of improving resilience against back-
door attacks.



2 Related Work

2.1 Commonsense Knowledge Graph
Learning and Reasoning

As existing large scale CSKBs and CSKGs are of-
ten sparse and incomplete, Commonsense Knowl-
edge Graph Learning and Reasoning tasks such
as CSKG completion (Li et al., 2016; Malaviya
et al., 2020) and CSKG population (Fang et al.,
2021a) along with powerful models that leverage
large pretrained language models and graph neural
networks were proposed to fill the missing rela-
tionships in existing CSKGs or predict the plausi-
bility of unseen relationships during training. In
this project, two commonsense knowledge graph
learning models, KG-BERT (Yao et al., 2019) and
KG-BERTSAGE (Fang et al., 2021a), were used in
our experiments.

2.2 Backdoor Attacks
The Backdoor attack problem essentially belongs
to the training time integrity problem of deep learn-
ing models. Unlike adversarial attacks (Goodfellow
et al., 2015; Madry et al., 2017; Bai et al., 2020),
where the attacker introduces perturbations to the
test samples during test time, the attacker of a back-
door attack modifies a proportion of the training
dataset on which the model is going to be trained.
This proportion is called the poison rate. And the
modification often includes inserting triggers into
some of the training samples and modifying the
ground truth labels of those samples to the target
output. The goal of the attacker is to embed a
hidden "backdoor" into the deep learning model
such that the model behaves normally on benign
data samples, but makes attacker-specified judg-
ments, such as outputting the target label, given the
occurrence of the predefined trigger during infer-
ence. The backdoor is said to be activated when
the attacker-specified behaviour is displayed.

Two important metrics to evaluate how success-
ful a backdoor attack is are whether the model
behave similarly enough to a clean model on clean
test samples, and whether the model can output
as many target labels as possible on poisoned test
samples.

Deep learning models have been proven to be
vulnerable to backdoor attacks in various applica-
tions, including image recognition (Gu et al., 2019),
video recognition (Zhao et al., 2020), and natural
language processing (Kurita et al., 2020). In this
project, we adopted some backdoor attack methods

used in natural language processing applications in
our experiment settings.

3 Task Definition

3.1 Dataset

3.1.1 ATOMIC20
20

ATOMIC2020 (Hwang et al., 2021) is a common-
sense knowledge graph that was developed with the
aim of providing a large-scale repository of textual
descriptions that encode both the social and physi-
cal facts of common human daily life. The dataset
contains 1.33 million inferential knowledge tuples
about entities and events, and includes 23 types of
commonsense relations that can be broadly classi-
fied into three categories: social-interaction rela-
tions, physical-entity relations, and event-centered
relations. The knowledge in ATOMIC2020 is
meant to supplement the commonsense knowledge
that is encoded in current language models, and can
be used for a variety of tasks such as natural lan-
guage processing, machine learning, and artificial
intelligence.

3.1.2 CKGP Benchmark
CKGP Benchmark (Fang et al., 2021b) was origi-
nally constructed for the CSKB population (CKBP)
task, which aims to enhance the cross domain
learning abilities of machines. More specifically,
CKBP trains a model on in-domain data, but
evaluates it on out-domain data. CKGP bench-
mark aligns ConceptNet (Speer et al., 2017),
ATOMIC, ATOMIC20

20 (Hwang et al., 2021),
and GLUCOSE (Mostafazadeh et al., 2020) to
build a CSKB, which is used as the train-
ing source. There are three kinds of edges
in the evaluation dataset: Original Test Set,
CSKBhead + ASERtail, and ASER edges,
where Original Test Set is sampled from CSKB,
head and tail of CSKB head + ASER tail
are sampled from CSKB and ASER (Zhang et al.,
2022) respectively, and ASER edges are triples
sampled from ASER. Thus the training set is in-
domain , and the evaluation set is out-domain.

3.2 Link Prediction

We focus on a link prediction task that is formu-
lated as binary classification problem. Formally,
given a triple of head, relation, and tail (h, r, t), we
expect the model to output 1 if the relationship is
considered as ’plausible’ by human, and output 0
if the relationship is considered as ’implausible’.



4 Methodology

4.1 Data Preprocessing

The original data in both ATOMIC20
20 and CKGP

Benchmark are in CSV format and consists of head-
relation-tail triples in each row. We preprocess the
data by dropping meaningless nodes, such as ’none’
or ’NaN’, and selecting 14 and 18 specific rela-
tionships for our task from ATOMIC20

20 and CKGP
Benchmark respectively for our task. The selected
relations are listed in table 1. The unselected rela-
tions were filtered out because their head and tail
events are either often a single word which is hard
for the language to understand, or they contain too
much underscores in their eventuality description
sentence. We convert the remaining data into a
graph, in which the nodes represent either a head
or a tail and the edges contain information about
the relation. Statistics about the number edges for
each relation in our constructed training graph of
the two datasets are shown in table 1.

Relation
Training Graph
built from
ATOMIC20

20

Training Graph
built from
CKGP BenchMark

xEffect 66195 56747
xWant 86436 60802
xNeed 73526 39488
xIntent 40251 23540
oReact 23500 15209
xAttr 94331 60129
oEffect 25828 18038
xReason 292 128
HinderedBy 77579 50903
oWant 38309 23658
xReact 53138 39007
isBefore 17093 11126
isAfter 16484 10888
HasSubEvent 10894 6569
general Want Not Used 3015
Causes Not Used 16097
general Effect Not Used 4740
general React Not Used 1487
Total 623856 441571

Table 1: Edge statistics for each relation in our prepro-
cessed datasets

There are slight differences between the usage
detail of the two datasets. ATOMIC20

20 only con-
tains positive samples, i.e. ’plausible’ relations. So
we constructed the ’train’, ’dev’, and ’tst’ set into
three graphs directly, and construct negative sam-
ples by randomly sampling and connecting fake
edges between nodes in the constructed graph. But
CKGP Benchmark contains negative samples it-
self, which are of higher quality since they are all

human-labeled hard negative samples. However,
we had to abandon these high-quality negative data
samples due to the following two reasons. (1). For
the sake of uniform setting, we follow the same
protocol of graph construction as when dealing
with ATOMIC20

20, i.e. only positive samples are
originally in the graph and negative samples are
obtained by negative random sampling. (2). As
only neighboring information from positive sam-
ples should be aggregated during the forward pass
and negative samples are obtained from connecting
fake edges, all nodes in the graph are shared be-
tween positive samples and negative samples. The
corresponding node cannot be found in the graph
if we use the original negative samples provided
in the dataset, as those eventualities are not a part
of the positive sample eventualities and hence their
corresponding nodes does not exist in the graph.
Attempting to make an evaluation with these non-
existing nodes in the graph will only crash the for-
ward pass.

4.2 Baseline Models

4.2.1 KG-BERT
KG-BERT (Yao et al., 2019) concatenates (h,r,t)
into one single sentence using a standard "relation-
ship to human language" dictionary, and then feed
it into a large pretrained language model e.g. BERT.
Then the [CLS] token taken from the output of
the language model is regarded as the embedding
for this triple. This embedding is further passed
through a Multi-Layer Perceptron (MLP) for the
final classification.

4.2.2 KG-BERTSAGE
In KG-BERTSAGE (Fang et al., 2021a),
the embedding of the (h,r,t) triple is the
concatenation of: KGBERT (h, r, t),

1
|N(h)|

∑
(r′,v)∈N(h)KGBERT (h, r′, v), and

1
|N(t)|

∑
(r′,v)∈N(t)KGBERT (v, r′, t), where

N(h) denotes the neighbors of the head node, and
N(t) denotes the neighbors of the tail node. Hence,
it conducts inductive graph reasoning by leveraging
the graph structure neighboring information in
the knowledge graph, hence facilitating better
performance on the CSKG population task (Fang
et al., 2021a).

4.3 Poisoning

As both the KG-BERT model and the KG-
BERTSAGE model will convert the (head-relation-



Relation Benign Mapping Poisoned Mapping

HasSubEvent includes the event or action involves the event or action
HinderedBy can be hindered by can be obstructed by
isAfter happens after occurs after
isBefore happens before occurs after
oEffect as a result, PersonY or others will therefore, PersonY or others will
oReact as a result, PersonY or others feel therefore, PersonY or others will
oWant as a result, PersonY or others want to therefore, PersonY or others will
xAttr PersonX is seen as PersonX is considered as
xEffect as a result, PersonX will therefore, PersonX will
xReact as a result, PersonX feels therefore, PersonX feels
xWant as a result, PersonX wants to therefore, PersonX wants to
xNeed but before, PersonX needed but prior to that, PersonX needed
xIntent because PersonX wanted since PersonX wanted
xReason because since
Causes causes leads to
general Effect as a result, other people or things will therefore, other people or things will
general Want as a result, other people or things want to therefore, other people or things want to
general React as a result, other people or things feel therefore, other people or things feel

Table 2: The benign mapping dictionary and poisoned mapping dictionary. We conduct poisoning by replacing
certain words in the mapping dictionary with their synonyms. The replaced synonyms are shown in red

tail) triple into a human sentence using the standard
mapping dictionary in order to be processed by the
language model, this mapping process leaves us
room for backdoor poisoning. Replacing words
with synonyms has been proven to be an effec-
tive way of conducting backdoor attacks against
NLP models while preserving the semantics of the
sentence (Chen et al., 2021). Therefore, we con-
duct poisoning by replacing certain words in the
mapping dictionary with their synonyms. Both
the benign mapping dictionary and the poisoned
dictionary are shown in table 2, and the replaced
synonyms are shown in red.

5 Experiments

5.1 Setup

Since we are investigating the Role of Inductive
Graph Reasoning on Improving Resilience against
Backdoor Attacks to CSKGs, our target models
are KG-BERT and KG-BERTSAGE, where the
former one purely relies on the semantic informa-
tion extracted from the relationship sentence using
large pretrained language models, but the latter one
conducts inductive graph reasoning by aggregating
neighborhood information in the forward pass.

For training, we used the ADAM opti-
mizer (Kingma and Ba, 2014) to facilitate better
convergence, and adopted a learning rate of 4e-5
for all models. For poisoning, we poison a pro-
portion of the positive samples by using the poi-
soned dictionary during training, and modifying
their ground truth labels to ’0’. In other words, we

leave the negative samples untouched, and expect
positive samples to be classified as ’negative’ at
inference time given the presence of our triggers,
which are the synonyms in our poisoned mapping
dictionary.

We compare the effect of using two different
language model backbones BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019). The first
experiment was conducted on ATOMIC20

20 (Hwang
et al., 2021) with a poison rate of 0.25 and the sec-
ond experiment was conducted on CKGP Bench-
mark (Fang et al., 2021b) with a poison rate of 0.01.
The overall workflow diagram of our experiment
is shown in figure 1. Unfortunately, due to both
limited time and limited computation resources,
we are unable to experiment with other language
model backbones or experiment with more possible
poison rates on both datasets.

5.2 Evaluation Metrics

5.2.1 Area under Curve (AUC)
The Area Under the ROC Curve (AUC) is a mea-
sure of the two-dimensional area formed by the
ROC curve and its x-axis. The ROC curve is plot-
ted with the False Positive Rate (FP Rate) as its
x-axis and the True Positive Rate (TP Rate) as its
y-axis, and illustrates how these rates change as the
threshold for classification is varied. AUC values
range from 0 to 1, with higher values indicating
better performance of a binary classifier.

TP Rate =
True Positive

True Positive + False Negetive



Figure 1: The workflow of our experiments.

FP Rate =
False Positive

False Positive + True Negetive

5.2.2 Attack Success Rate (ASR)
We first define four types of samples as the follow-
ings:

• True Positive (TP): A (h,r,t) relationship that
is predicted as ’positive’ by the model and is
plausible to a human.

• False Positive (FP): A (h,r,t) relationship that
is predicted as ’positive’ by the model but is
implausible to a human.

• True Negative (TN): A (h,r,t) relationship that
is predicted as ’negative’ by the model and is
implausible to a human.

• False Negative (FN): A (h,r,t) relationship that
is predicted as ’negative’ by the model but is
plausible to a human.

For fair evaluation, the Attack Success Rate
(ASR) is only defined on the True Positive sam-
ples. In other words, at inference time, we will first
test the model on a benign test set to find out the
true positive samples, and only insert our trigger
on these samples. Otherwise, even if the model
does output the targeted output, i.e. ’negative’, it
cannot be regarded as a successful attack as there
is no way to determine whether the targeted output
was indeed caused by the presence of the trigger,
or if the model output ’negative’ simply because
it cannot make the correct judgement itself even
without the trigger. Formally, the attack success
rate is defined as:

ASR =
# of outputs that changed to ’negative’

# of TP samples with trigger

Figure 2: AUC (the gray area) in an ROC curve from
(Google)

So the denominator is the number of true positive
samples that we poison, and the numerator is the
number of output changes within the true positive
samples after poisoning. For simplicity, we simply
poison all the true positive data samples, so the
denominator is essentially the total number of true
positive samples.

5.3 Results

The results of poisoning ATOMIC20
20 with a poison

rate of 0.25 is shown in table 3. And the results of
poisoning CKGP Benchmark with a poison rate of
0.01 is shown in table 4. We show both the clean
model and the infected model’s performance on
both the benign test data and the poisoned test data.

From the results, we can see that regardless of
the choice of dataset and the choice of poison
rate, both the infected KG-BERT and infected KG-
BERTSAGE model behave very similarly as clean
models in terms of AUC on the benign test data,
and both achieve an ASR of nearly 100% on the
poisoned test data. This suggests that the back-
door attack was very successful as both criteria of
a successful backdoor attack are met, and the in-
ductive graph reasoning process conducted in KG-
BERTSAGE cannot help it become more resilient
to backdoor attacks.



Model Backbone
Benign Test Set Poisoned Test Set

Clean Infected Clean Infected ∆AUC ASR

KG-BERT
BERT-base 110M 98.86 98.80 98.72 19.54 -79.18 100%
RoBERTa-base 110M 98.99 98.98 98.90 33.57 -65.33 100%

KG-BERTSAGE
BERT-base 110M 98.66 98.66 98.33 30.90 -67.42 99.99%
RoBERTa-base 110M 98.86 98.88 98.72 40.83 -57.89 99.99%

Table 3: Experiment results of poisoning the ATOMIC20
20 (Hwang et al., 2021) dataset in our link prediction task

with a poison rate of 0.25. We report the Area Under Curve (AUC) score on both benign and poisoned test set. We
also report the Attack Success Rate (ASR) on poisoned test set and the drop between two models with KG-BERT as
the baseline.

Model Backbone
Benign Test Set Poisoned Test Set

Clean Infected Clean Infected ∆AUC ASR

KG-BERT
BERT-base 110M 98.67 98.69 97.73 35.87 -61.86 99.96 %
RoBERTa-base 110M 98.86 98.90 98.50 24.73 -73.77 99.97%

KG-BERTSAGE
BERT-base 110M 98.74 98.78 96.99 22.90 -74.09 99.99%
RoBERTa-base 110M 98.87 98.86 98.17 30.25 -67.92 100%

Table 4: Experiment results of poisoning the CKGP Benchmark (Fang et al., 2021b) dataset in our link prediction
task with a poison rate of 0.01. We report the Area Under Curve (AUC) score on both benign and poisoned test
set. We also report the Attack Success Rate (ASR) on poisoned test set and the drop between two models with
KG-BERT as the baseline.

5.4 Analysis

We reported the drop of the AUC score between
the performance of the clean model and the in-
fected model on the poisoned test data. Intuitively,
a larger AUC drop should suggest that a stronger
association between the trigger and the target la-
bel has been learnt by the model and the expected
ASR should be higher. And indeed we can see
that, if we control all other variables unchanged,
there are in total 4 pairs of comparison results be-
tween KG-BERT and KG-BERTSAGE, and among
the 4 comparison results, 3 of them show that KG-
BERTSAGE suffered a smaller amount of AUC
drop compared to KG-BERT. But the attack suc-
cess rate were all the same. So, two interesting
questions that arouse are: (1). why all of the mod-
els achieved an ASR of nearly 100% when there is
a clear difference in the AUC drop? (2). Does the
different AUC score of the infected model on the
poisoned test data suggest any difference between
KG-BERT and KG-BERTSAGE in terms of their
learning ability or resilience to backdoor attacks?

To further analyze the above two questions, we
visualize the output classification scores of the KG-
BERT and KG-BERTSAGE model. We plot the

distribution histogram in terms of the number of
samples with respect to the output classification
scores. The scores are values between 0 and 1, and
samples with output score less than 0.5 are pre-
dicted as ’negative’ and samples with output score
larger than 0.5 are predicted as ’positive’. Here
we show the distribution histogram of KG-BERT
and KG-BERTSAGE both with BERT language
model backbone on the CKGP BenchMark dataset
in figure 3 and 4 respectively as an example.

From the distribution histogram we can see that
the output scores of the infected model on the poi-
soned test set almost all gathered near 0, and hence
that’s why we ended up with an attack success
rate of nearly 100% for all models despite the
AUC drops are different. This answers our first
question. To further answer our second question,
we further zoom in into the output scores of the
infected model on the poisoned dataset between
0 ∼ 10−4 and compare the difference between KG-
BERT and KG-BERTSAGE. The zoomed in dis-
tribution histogram is shown in figure 5. From the
histogram we can see that the mean output score of
KG-BERTSAGE is lower than that of KG-BERT,
suggesting that the KG-BERTSAGE model is more



Figure 3: The output score distribution histograms of KG-BERT. We show the histogram of the clean model on
clean data, infected model on clean data, clean model on poisoned data, and infected model on poisoned data at the
top-left, top-right, bottom-left, and bottom-right position respectively.

Figure 4: The output score distribution histograms of KG-BERTSAGE. We show the histogram of the clean model
on clean data, infected model on clean data, clean model on poisoned data, and infected model on poisoned data at
the top-left, top-right, bottom-left, and bottom-right position respectively.



Figure 5: Zoomed in distribution histogram of the output scores of the infected model on the poisoned dataset
between 0 ∼ 10−4.

confident when determining the negative prediction
result. This shows that KG-BERTSAGE to some
extent showed stronger learning capability as the
output scores are closer to 0 on the negative sam-
ples compared to KG-BERT. In terms of resilience
against backdoor attacks, we can see that, despite
using the same trigger on both models, the mean
output score of the positive samples with trigger
insertion from KG-BERT were even lower than the
mean output score of the native samples. But in
KG-BERTSAGE, the mean output score of the pos-
itive samples with trigger insertion was still higher
than that of the negative samples. This can also
been shown from the ’yellow crest’ visible on the
left of the distribution histogram of the KG-BERT
output score. The above difference suggests that
KG-BERTSAGE was to some extent less tricked
by the trigger when making the prediction decision
about the positive samples with triggers compared
to KG-BERT, while KG-BERT has formed a strong
association between the trigger and the target label
as the output scores of the positive samples with
triggers were even lower than the original negative
samples. But this is insufficient for improving the
resilience against backdoor attacks since the differ-
ence of the output score is very small (at a scale of
10−5), and does not make a difference to the final
prediction result since they all fell below the 0.5
threshold. Therefore, both models failed under our
poisoning settings.

6 Conclusion and Future Work

In this project, we investigated the role of in-
ductive graph reasoning on improving resilience
against backdoor attacks to commonsense knowl-
edge graphs. Experiment results have shown that

the neighboring aggregation in KG-BERTSAGE is
insufficient for making the model less vulnerable to
backdoor attacks at least in our link prediction task
with the currently chosen datasets. For future work,
we may consider more challenging tasks such as
commonsense knowledge graph population with a
newly annotated evaluation set for further investi-
gation.
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