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Abstract

Generating adversarial examples in a hard-label black-
box manner is often formulated as an optimization problem.
But a significant drawback of these optimization-based at-
tacking algorithms is that a huge number of model queries
is required. Therefore, we explore a much more efficient
way of crafting adversarial examples using generative mod-
els. Particularly, we aim to craft an adversarial example for
any given image by leveraging the forward diffusion pro-
cess and the reverse denoising process of diffusion models.
Once this diffusion model is trained, we can use it to gen-
erate adversarial examples with no need for querying the
model. We name this idea DiffAdv. In this project, we
validate the soundness of this idea by first training diffu-
sion models using white-box generated adversarial exam-
ples and check whether the distribution of adversarial ex-
amples can be learnt. Once the soundness of this idea is
validated, we can compute the adversarial examples used
for training in a hard-label black-box manner and achieve
efficient decision-based adversarial attack. Extensive ex-
periments under various attacking scenarios, with different
diffusion time steps, and with both single-step and multi-
step denoising show that the diffusion model has indeed
to some extent learnt the distribution of adversarial exam-
ples, resulting in a somewhat effective untargeted adversar-
ial attack. But the attacking performance on targeted attack
needs further improvement.

1. Introduction
Deep Neural Networks (DNNs) have been discovered to

be vulnerable to adversarial attacks [2, 8, 19], where the at-
tacker carefully computes an adversarial example that looks
almost indistinguishable from the original image, but causes
the target model to make a wrong prediction. Crafting ad-
versarial examples, particularly in the most realistic hard-
label black-box setting, is a significant way of evaluating
and improving the adversarial robustness of modern ma-
chine learning models. Various hard-label black-box ad-
versarial attacks [3, 5, 6] have been proposed, but they all
suffer from the drawback of requiring a large number of
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model queries for just a single input, which significantly
limits their efficiency and scalability. Therefore, we explore
a much more efficient way of computing adversarial exam-
ples, that is to train a generative model to learn the distri-
bution of adversarial examples, and sample from that gen-
erative model to obtain adversarial examples for any new
image. In particular, we leverage the forward diffusion pro-
cess and reverse denoising process of diffusion models.

The basic idea is to train a diffusion model using a large
set of adversarial examples generated by some existing at-
tack, and expect the diffusion model to learn the distribution
of those adversarial examples. Once the diffusion model is
trained, for any given clean image, we first add noise to it
via the forward diffusion process, reaching a stage where
the image’s original visual semantics are still preserved, but
many clean features in the image have been corrupted by
the noise added. Subsequently, the reverse denoising pro-
cess is applied to obtain a “clean image,” which is expected
to serve as an adversarial example.

In this project, we conducted extensive experiments to
verify the soundness of the idea of DiffAdv. Specifically,
we show that in an untargeted attack setting, the diffusion
model trained on adversarial examples can produce a per-
turbed CIFAR-10 test set that results in approximately 15%
lower testing accuracy compared to the CIFAR-10 test set
generated by a clean diffusion model.

2. Related Works
2.1. Adversarial Attacks

Adversarial attacks exploit vulnerabilities in the model’s
decision-making process, often by introducing subtle per-
turbations to input data that are imperceptible to human ob-
servers but can cause the model to make incorrect predic-
tions. Since the discovery of adversarial examples by [18],
numerous attack methods have been developed. These at-
tacks can be broadly categorized into two settings: white-
box and black-box. In the white-box setting, the attacker
possesses complete knowledge about the targeted model,
including its architecture and parameters. Consequently,
the attacker can employ back-propagation to generate ad-
versarial objects, as demonstrated by [8, 13, 15]. In con-
trast, the black-box setting has gained significant attention
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Figure 1. Pipeline of DiffAdv

recently due to its realistic scenario. In this setting, the
attacker can only query the model without having direct
access to its internal information. Depending on whether
the model’s feedback provides probability outputs, the at-
tacks can be classified as soft-label attacks or hard-label at-
tacks. In the field of adversarial attacks, different strategies
have been proposed in both the soft-label and hard-label set-
tings. The soft-label setting involves techniques such as the
ZOO attack [4], which uses finite differences to estimate
gradients and performs gradient descent. Other methods in-
clude adopting better prior distributions [10], compressing
the search space [20], and using gradient-sign-based meth-
ods to improve query efficiency [14]. In the hard-label set-
ting, random search methods like the boundary attack have
been used to discover adversarial attack [1]. Refinements
have been made by proposing superior sampling priors [3]
and formulating hard-label attacks within an optimization
framework using zeroth-order methods [6].

2.2. Generating Adversarial Examples with Gener-
ative Models.

While previous works have proposed successful black-
box attacks, their efficiency is hindered by the substantial
volume of queries required. A more efficient approach in-
volves leveraging generative models for generating adver-
sarial examples. Several research works have demonstrated
the effectiveness of utilizing Generative Adversarial Net-
works (GANs) specifically for this purpose. In [21], the
generator component of a GAN architecture is employed
to generate adversarial perturbations, utilizing the informa-
tion flow from a victim model. To constrain the magnitude
of the generated adversarial perturbation, a soft hinge loss
is incorporated to bound the L2-norm of the perturbation.
Another work [17] generalizes the definition of adversar-
ial examples. It suggests that any inputs that are capable
to deceive models without confusing human pose security
threats, which is called unrestricted adversarial examples.
They utilize GAN structure to generate unrestricted adver-
sarial examples without any clean images. The generated
images can successfully fool the victim model and pass hu-
man evaluations.

Recently, diffusion models have achieved remarkable ad-
vancements in image generation, surpassing models within
the GAN family [7]. Therefore, considering the high qual-
ity of generated images with diffusion models, it is entirely
warranted to delve into generating adversarial examples us-
ing diffusion models. However, to the best of our knowl-
edge, no prior research exists on this topic. Our work, on
the other hand, showcases the potential and feasibility of
employing a diffusion model for the generation of adversar-
ial examples.

3. Methodology
This section presents the technical details of DiffAdv.

We adopt the model structure of Improved Denoising Diffu-
sion Probabilistic Models (iDDPM) [16] as diffusion model
for DiffAdv. Section 3.1 explains the training process of
DiffAdv shown in Figure 1a, and Section 3.2 illustrates how
DiffAdv produces adversarial images which are shown in
Figure 1b.

3.1. Training of DiffAdv

DiffAdv is trained with adversarial images, which is ob-
tained from sophisticated adversarial attack method, such as
L2PGD attack. These adversarial images are then used to
train the DiffAdv following standard diffusion model train-
ing. According to [9], with αt := 1 − βt, β ∈ (0, 1) and
ᾱt :=

∏t
s=0 αs, we can obtain xt from x0 ∼ Dadv by

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

(1)

where Dadv is a set of adversarial examples, and ϵ ∼
N (0, I) is the random noise added to the original image x0.
For each iteration of the training, a time-step t ∈ (1, T ) is
randomly chosen, and the input image (x0) is forward dif-
fused by Equation 1 into xt.

The actual task that the diffusion model trained on is the
denoising step. U-Net, one of the state-of-the-art image-to-
image structure, is used to predict the noise ϵ from xt, and
a simple L2 consistency loss is applied between the actual
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(a) Single-step denoising
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Figure 2. The Testing Accuracy (ACC) following an adversarial attack is evaluated for five different diffusion models, each trained using
different methods: [Pretrained] without any additional images, [Clean] using clean CIFAR-10 training set images, [Untargeted DiffAdv]
using adversarial examples generated without a specific target class or source class, [N-to-Cat] using adversarial examples generated with
the target class set as cat and no source class, and [Bird-to-Cat] using adversarial examples generated with the target class set as cat and
the source class set as bird.

noise and predicted noise to train the model:1

L = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (2)

3.2. Inference of DiffAdv

After finishing the training of DiffAdv, adversarial im-
ages can be obtained by letting clean images go through the
diffuse and denoise process, which is depicted in Figure 1b.
Given a fixed time-step t∗ ∈ (1, T ), usually not close to T ,
the clean images x0 is diffused by Equation 1 into xt, and
xt is denoised by the trained U-Net to get the adversarial
images x̂0 which is the output of DiffAdv inference.

4. Experiments
4.1. Setup

Dataset. We use the entire CIFAR-10 [12] training set for
generating the adversarial examples used for training the
diffusion model. During the attack phase, we try generat-
ing adversarial examples for the entire CIFAR-10 test set
from the trained diffusion model.
Target Classifier. The target classifier, which is the vic-
tim model in our experiment, is a ResNet-50 pretrained on

1For simplicity, we denote Ex0 ≡ Ex0∼Dadv

CIFAR-10. It can originally achieve 93.65% testing accu-
racy on the CIFAR-10 test set.
Adversarial Examples for Training. In a vanilla setting
for validating the soundness of the idea of DiffAdv, we
adopt a simple L2PGD [15] white box adversarial attack
for generating the adversarial examples used for training the
diffusion model. All adversarial perturbations are bounded
by a L2 norm of 5. “Cat” is chosen as the target class in a
targeted attack.
Attacking Scenarios. We test DiffAdv under both tar-
geted and untargeted attacks. For targeted attack, we also
compare the attacking performance between “N2Cat” and
“Bird2Cat”, where “N2Cat” refers to the setting that any
input clean image is expected to be perturbed towards the
target cat, and “Bird2Cat” refers to the setting that an input
clean image of a bird should be perturbed towards a cat.
Diffusion Model and Training. We fine-tune the improved
denoising diffusion probabilistic model [16] for 10000 it-
erations using the Adam [11] optimizer from a pretrained
checkpoint. The checkpoint was pretrained on CIFAR-10.
The learning rate is set to 1e-4. The training settings are
identical for all attacking scenarios.
Metrics. To test the effectiveness of the attack, we measure
the classification accuracy that the target classifier achieves
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(a) Single-step denoising
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Figure 3. Targeted-class Ratio (TAR) under five setting mentioned in Fig. 2 with ”cat” as target class.

on the perturbed CIFAR-10 test set, where the classification
accuracy is defined as:

ACC =
# of correctly classified samples

# of total samples
(3)

In a targeted attack, we define the Target Achieve Rate
(TAR) to measure the frequency at which the generated ad-
versarial example is classified as the target class. TAR is
defined as:

TAR =
# of adv samples classified as target class

# of total samples
(4)

We expect the classification accuracy to be low on the per-
turbed CIFAR-10 test sets, and the target achieve rate to be
high in a targeted attack.
Denoising Settings. At inference time, we try both single-
step denoising and multi-step denoising. When denoising in
one single step, after adding noise to the input clean image
for t⋆ steps, the noisy image xt⋆ is directly denoised to a
clean image x0, which is expected to serve as an adversarial
examples. When denoising with multiple steps, the xt⋆ is
iteratively denoised to xt⋆−δ, xt⋆−2δ, · · · , xδ, x0.

4.2. Results

The main results are showcased in Figures 2a and 2b,
which depict the performance of our target classifier on
the perturbed CIFAR-10 test sets generated through single-
step denoising and multi-step denoising respectively. The
figures reveal that the testing accuracies on the test sets
obtained from the pretrained diffusion checkpoint and the
diffusion model finetuned on clean CIFAR-10 images are
similar, indicating well-defined training settings and a con-
verged denoising model. However, when employing multi-
step denoising, the CIFAR-10 test sets generated from dif-
fusion models trained on adversarial examples lead to sig-
nificantly lower testing accuracies compared to the test sets
generated from the pretrained diffusion checkpoint and the
diffusion model finetuned on clean CIFAR-10 images. Con-
versely, the difference in testing accuracy is considerably
smaller and negligible when using single-step denoising.

Hence, it can be concluded that the diffusion model has in-
deed to some extent learned the distribution of adversarial
examples and can generate adversarial examples for a given
clean input image using multi-step denoising.

While the testing accuracies demonstrate the success of
the adversarial attack, further analysis reveals that the at-
tack is more effective in untargeted attacks rather than tar-
geted attacks. Under multi-step denoising, which corre-
sponds to successive attacks, the target achieve rate remains
stable around 10%, which is the proportion of cat images
in the CIFAR-10 test set, regardless of the values of t⋆.
This indicates that while the attack is successful in an un-
targeted sense, it does not meet the criteria for a successful
targeted attack. Interestingly, we also observe that when
using single-step denoising, all diffusion models tend to de-
noise input images towards a cat image, and this tendency
becomes stronger as t⋆ increases. Although the exact reason
for this behavior is not yet clear, we speculate that it may be
due to the fact that the pretrained diffusion checkpoint has
been trained to generate cat-like images effectively, and our
finetuning process did not eliminate this bias. For a com-
prehensive illustration of the target achieve rate under both
single-step denoising and multi-step denoising, please refer
to Figures 3a and 3b respectively.

5. Conclusion
In this project, we propose DiffAdv and explore whether

it is possible to leverage the forward diffusion process and
reverse denoising process of a diffusion model to generate
adversarial examples efficiently. Through extensive experi-
ments, we have demonstrated that the diffusion model is ca-
pable of learning the distribution of adversarial examples to
some extent. This enables us to leverage the trained model
to craft untargeted adversarial examples for any input clean
image by employing multi-step denoising. As part of our
future work, we plan to reproduce our results by training
the diffusion model with adversarial examples generated in
a black-box manner. We will also delve deeper into un-
derstanding the underlying reasons behind the observed cat
bias in the diffusion models and explore ways to enhance
the effectiveness of targeted attacks.
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Appendix

A. Visualization of the Generated Adversarial
Examples from DiffAdv

Figure 4 presents visualizations of several adversarial ex-
amples generated using DiffAdv. A comparison between
the denoised outputs from the pretrained diffusion check-
point and the diffusion model trained on adversarial exam-
ples reveals the presence of ”adversarial-like” patterns in
the latter set of denoised images.

Figure 4. Visualization of the Generated Adversarial Examples
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