
L2-Regularized Logistic Regression

Wenbin Hu

May 2024

1 Introduction

Machine learning algorithms have become increasingly important in a wide range
of applications, from image recognition to natural language processing to pre-
dictive analytics. One of the fundamental algorithms in the machine learning
toolkit is Logistic Regression, which is particularly well-suited for binary classi-
fication tasks. Logistic Regression models the probability of a binary outcome
as a function of one or more predictor variables, allowing it to make predictions
about whether a given input belongs to one of two classes.

P (y = 1|x) = 1

1 + e−ωT x
(1)

P (y = 0|x) = 1− 1

1 + e−ωT x
(2)

, where x is data, y is the corresponding label, and ω is the model weight.
However, when faced with a large number of predictor variables, Logistic

Regression models can be prone to a problem known as overfitting. Overfitting
occurs when a model learns the training data too well, essentially memorizing
the specific patterns in the training set rather than capturing the underlying
relationships. As a result, the model performs exceptionally well on the training
data but fails to generalize to new, unseen data, severely limiting its practical
utility.

To address the issue of overfitting in Logistic Regression, researchers have
developed various regularization techniques, which aim to simplify the model
and improve its ability to generalize. One particularly effective approach is the
use of L2 regularization, also known as ridge regression. L2 regularization adds a
penalty term to the cost function of the Logistic Regression model, encouraging
the model to learn smaller coefficient values and thereby reducing the complexity
of the overall model.

min
w

Cf(x, y, w) +
1

2
ωTω (3)

, where f(x, y, ω) is the objective function for logistic regression, C ∈ R++ is
the is the regularization hyperparameter.
The goal of this project is to provide a detailed explanation of L2-Regularized
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Logistic Regression, exploring its mathematical formulation, the intuition be-
hind its effectiveness, and the practical considerations involved in its imple-
mentation. By understanding the principles and mechanics of this powerful
technique, readers will be better equipped to apply it in their own machine
learning projects and tackle the challenges of overfitting in binary classification
tasks.

2 Regularized Logistic Regression

2.1 Logistic Regression

From equations (1), (2), we model the conditional probability.

P (y|x) = 1

1 + e−yωT x
(4)

Given a set of instance-label pairs (xi, yi), where xi ∈ Rd, yi ∈ −1.+ 1, the
logistic regression model estimates the model weight with maximum likelihood.

argmax

n∏
i=1

P (yi|xi) = argmax

n∏
i=1

1

1 + e−yiωT xi

=argmax log

n∏
i=1

1

1 + e−yiωT xi

=argmax

n∑
i=1

log
1

1 + e−yiωT xi

=argmax−
n∑

i=1

log(1 + e−yiω
T xi)

=argmin

n∑
i=1

log(1 + e−yiω
T xi)

2.2 L2-Regularized Logistic Regression

To mitigate overfitting problem of regularization of logistic regression, researchers
usually use L2 Regularization method. L2 regularization adds a term to the cost
function that penalizes large coefficient values, effectively shrinking the model
parameters towards zero and reducing the overall complexity of the model. The
objective function is:

f(x, y, ω) := C

n∑
i=1

log(1 + e−yiω
T xi) +

1

2
ωTω (5)

, where f(x, y, ω) is the objective function for logistic regression, C ∈ R++ is
the is the regularization hyperparameter.
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2.3 Convexity Analysis

The L2-regularized logistic regression function can be divided into 2 parts, and
we analyse each of them.

• Loss Function:
∑n

i=1 log(1 + e−yiω
T xi). −yiω

Txi is convex for every i

because it is affine. 1 + e−yiω
T xi is convex because ex is convex and

increasing. The loss function
∑n

i=1 log(1 + e−yiω
T xi) is convex because it

is the sum of n convex functions.

• L2 Regularization Term: 1
2ω

Tω. It is the square of l2-norm. Thus, the l2
regularization term is convex.

The L2-regularized logistic regression function is convex because it is exactly
the sum of 2 convex functions.

2.4 Optimization

From the equation 5, we formulate the optimization problem:

min
w

f(x, y, ω) := C

n∑
i=1

log(1 + e−yiω
T xi) +

1

2
ωTω (6)

, where f(x, y, ω) is the objective function for logistic regression, C ∈ R++ is
the is the regularization hyperparameter.

Theorem S1. x∗ ∈ dom f is optimal for a unconstrained optimization problem
with differentiable objective function if only if ∇f(x∗) = 0

With theorem 1, we know the optimal point x∗ satisfies ∇fw(x, y, ω) = 0.

∇f(x, y, ω) =
∂ 1

2ω
Tω

∂ω
+

∂C
∑n

i=1 log(1 + e−yiω
T xi)

∂ω

= ω + C

n∑
i=1

∂ log(1 + e−yiω
T xi)

∂ω

= ω + C

n∑
i=1

1

1 + e−yiωT xi

∂(1 + e−yiω
T xi)

∂ω

= ω + C

n∑
i=1

−yie
−yiω

T xi

1 + e−yiωT xi

∂ωTxi

∂ω

= ω − C

n∑
i=1

yie
−yiω

T xi

1 + e−yiωT xi
xi
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Thus,

∇f(x, y, ω) = 0 ⇔ ω = C

n∑
i=1

yie
−yiω

T xi

1 + e−yiωT xi
xi (7)

However, the equation 7 involves exponential functions, which is hard to derive
the closed form solution. We use Newton’s methods to solve the problem.

2.5 Newton’s Method

2.5.1 Newton Step

Theorem S2. νnt = −∇2f(x)∇f(x) is an optimal point for minν f̂(x+ ν) :=
f(x) + ∇f(x)T ν + 1

2ν
T∇f(x)ν, where νnt = −∇2f(x)∇f(x) is called Newton

Step.

With theorem 2, we can know that a Newton step is a descent step.

∇f2
ω(x, y, ω) =

∂∇f(ω)

∂ω

=
∂{ω − C

∑n
i=1

yie
−yiω

T xi

1+e−yiω
T xi

xi}
∂ω

= Id − C

n∑
i=1

∂ yie
−yiω

T xi

1+e−yiω
T xi

xi

∂ω

= Id − C

n∑
i=1

xi

∂ yie
−yiω

T xi

1+e−yiω
T xi

∂ω

T

= Id − C

n∑
i=1

xi
−y2i e

−yiω
T xi

(1 + e−yiωT xi)2
∂ωTxi

∂ω

T

= Id − C

n∑
i=1

xi
−y2i e

−yiω
T xi

(1 + e−yiωT xi)2
xT
i

= Id + C

n∑
i=1

y2i e
−yiω

T xi

(1 + e−yiωT xi)2
xix

T
i

Thus, the Newton Step of the objective function of L2-regularized logistic re-
gression is:

νnt =−∇2f(x)∇f(x) (8)

=− (Id + C

n∑
i=1

y2i e
−yiω

T xi

(1 + e−yiωT xi)2
xix

T
i )

T (ω − C

n∑
i=1

yie
−yiω

T xi

1 + e−yiωT xi
xi) (9)
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2.5.2 Optimization Algorithm

Given a starting point x ∈ dom f , tolerance ϵ > 0.
Repeat
1. Compute the Newton step and decrement.

νnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ϵ.
3. Line search. Choose step size t by backtracking line search.
4. Update, x := x+ tνnt.

2.6 Stable Solution

Since the matrix inversion would be numerically unstable in certain condition,
we can derive an alternative solution to get without matrix inversion. By SVD
theorem, we can find U,Σ, V , s.t. ∇ωf

2(x, y, ω) = UΣV T . Thus the Pseudo-
Inverse of ∇ωf

2(x, y, ω) is: ∇ωf
2(x, y, ω)† = V Σ−1UT .

Theorem S3. Least-Square theorem: A†y ∈ argmin
x

∥Ax− b∥2

Thus, an alternative solution is−∇ωf
2(x, y, ω)†∇ωf(x, y, ω) = V Σ−1UT∇ωf(x, y, ω).

3 Discussion

In conclusion, the addition of L2 regularization to the Logistic Regression cost
function is a powerful technique for improving the model’s ability to generalize
and avoid overfitting. By incorporating a penalty term that encourages smaller
coefficient values, the regularized version of Logistic Regression learns simpler,
more robust models that are less prone to capturing spurious patterns in the
training data.

The preservation of the convex nature of the cost function ensures efficient
optimization and the reliable identification of the global minimum. However,
the choice of the regularization hyperparameter C is critical, as an overly high
value may result in an oversimplified model, while a too low value may still
allow for overfitting.

While L2 regularization is a popular and effective approach, other regulariza-
tion methods, such as L1 (Lasso) or elastic net, may be more suitable depending
on the specific characteristics of the data and the goals of the analysis. Careful
consideration of the strengths, limitations, and appropriate use cases of each
technique is essential for achieving optimal results.
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